PXIe

Manufacturing Test – for mission-critical components

 

Using PXI & LabVIEW RT

Client: A major manufacturer of implantable cardiac and neural stimulators

Challenge

Our client needed several extremely reliable test systems to test the batteries that power their implantable medical devices. These new test systems were needed for two main reasons. First, the needed to upgrade existing obsolete test equipment, based on antiquated hardware and software. Second, new battery designs could not be tested on the old equipment.

A critical aspect of the new test system was the need to detect any excessive charge being extracted from the battery, thus rendering it unsuitable for surgical implantation. Thus, the test system needed to monitor the total energy withdrawn from a battery during testing to assure that it never exceeded a certain limit while also offering precise control of the type of pulses being drained from a battery.

All test results had to be stored in a database in order to maintain device history for each battery manufactured for archiving, quality control, and process improvements.

Solution

PXIe

The updated manufacturing test system is PXI-based along with a custom micro-controller-based circuit board for some low-level control. Each PXI controller communicated to the microcontroller (uC) on the custom PCB via CAN. The uC controlled the current drain from the battery while monitoring actual current and voltage from the battery at over 1000 samples per second using a precision 6.5 digit PXI DMM. Additionally, each PXI chassis was used to test many hundreds of batteries. Signal connections were handled by several switch multiplexers. Overall control of all the PXI testers was managed by a host PC connected to the PXI controller.

Benefits

  • Reduced test system cost vs complete COTS solution with combo LabVIEW RT on PXI and firmware on microcontroller-based custom circuit board
  • Enabled tight control of DUT operation on controller with microsecond level responsiveness while being supervised by higher-level PXI RT
  • Quick-reaction test abort capability
  • Test results stored to database for archiving, quality control, and process improvements

System Overview

In a simplified view, the testing proceeded by pulsing the battery with a series of different durations and varying amperages. The exact sequence of this pulsing is unique for each DUT model. Measurements were made using a PXI filled with various NI boards such as DMMs, for accuracy, and data acquisition cards, for general purpose use.

Additionally, the pulsing amperage levels needed to be tightly controlled in order to know that the tests have been performed properly. Thus, a real-time amperage control scheme had to be implemented to maintain the level requested for the pulse. We chose to accomplish this control via an analog control circuit developed using a custom Viewpoint-developed circuit board. This board was controlled via a Microchip PIC microprocessor. The LabVIEW RT application communicated with the microcontroller to setup the pulsing sequence and coordinate the start and stop of the pulsing and the NI acquisition hardware.

This custom circuitry also reduced the overall cost of the test system by about 40%.

The engineering time to design this custom circuitry was more than offset by the reduction in material costs because more than 10 test systems were deployed, allowing the non-recurring engineering effort to be shared between many systems.

When no critical issues were detected, the waveforms acquired by the PXI system were stored and then analyzed to determine the viability of the DUT. The pass/fail disposition, the waveforms, the total energy consumed, and other test results were then passed along to a master PC that managed all these results in a database for archiving, quality control, and process improvements, each set of results being tied to the unique unit serial number.
The test systems provided reliable operation for testing the large annual production volumes of the mission-critical DUTs.

SOFTWARE FUNCTIONS
LabVIEW RT – for managing the microcontroller functions and overall data collection and safety monitoring
Microcontroller application – to provide precision pulsing of the batteries
Communicate to the host PC – to both receive pulsing instructions and configurations and to return pulse waveforms for each battery tested.
MAIN HARDWARE COMPONENTS
PXI chassis & controller
PXI DMM
PXI analog input modules
SCXI multiplexing switches
INTERFACES / PROTOCOLS:
Ethernet TCP-IP
CAN